Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy
نویسندگان
چکیده
We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1 + 1)-PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. We introduce (1 + lambda) and (mu + lambda) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.
منابع مشابه
Modified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations
In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...
متن کاملA COMPARISON OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS by Crina Gro ş
In this paper a comparison of the most recent algorithms for Multiobjective Optimization is realized. For this comparison are used the followings algorithms: Strength Pareto Evolutionary Algorithm (SPEA), Pareto Archived Evolution Strategy (PAES), Nondominated Sorting Genetic Algorithm (NSGA II), Adaptive Pareto Algorithm (APA). The comparison is made by using five test functions.
متن کاملA fast and elitist multiobjective genetic algorithm: NSGA-II
Multiobjective evolutionary algorithms (EAs) that use nondominated sorting and sharing have been criticized mainly for their: 1) ( ) computational complexity (where is the number of objectives and is the population size); 2) nonelitism approach; and 3) the need for specifying a sharing parameter. In this paper, we suggest a nondominated sorting-based multiobjective EA (MOEA), called nondominate...
متن کاملMultiobjective Differential Evolution with External Archive and Harmonic Distance-Based Diversity Measure
This paper presents an approach to incorporate Pareto dominance into the differential evolution (DE) algorithm in order to solve optimization problems with more than one objective by using the DE algorithm. Unlike the existing proposals to extend the DE to solve multiobjective optimization problems, our algorithm uses an external archive to store nondominated solutions. In order to generate tri...
متن کاملThe Pareto Archived Evolution
We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible non-trivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy, employing local search but using a reference arc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolutionary computation
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2000